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Abstract. It is now well-known that electron (hole)-vibron coupling and hence Jahn-Teller (JT) effect is
important understanding the properties of C60 and related molecules. In this paper, we study H⊗(2h⊕ g)
coupling case to find the potential energy surfaces for the positively charged C60 molecule due to distortion.
The H⊗(2h⊕g) Jahn-Teller system is of particular importance as this will be the JT effect displayed by C60

molecules removed with an electron. C+
60 is obtained by removing one electron from fivefold degenerate Hu

highest occupied molecular orbital (HOMO) and a hole in HOMO interacts with the vibrational modes of
C60 and symmetry is broken. We apply the method of symmetry breaking mechanism to obtain expressions
for the potential energy surface.

PACS. 31.15.Hz Group theory – 31.15.Dv Coupled cluster theory – 31.70.-f Effects of atomic and molecular
interactions on electronic structure

1 Introduction

Except at absolute zero in temperature, all atoms and
molecules have energy and vibrate. The electrons in C60

molecule will be sensitive to these vibrations. It is be-
lieved that this vibronic coupling plays an important role
in determining the behaviour of C60 molecules and related
fullerene compounds.

The symmetry group of C60 molecule is icosahedral
(Ih). This symmetry group implies large representations,
thus large degeneracies of the interacting electronic and
vibrational states of isolated ion. Icosahedral symme-
try is extremely rare in nature, vibronic coupling effects
have not been investigated in this symmetry until very
recently. Many interesting effects due to vibronic cou-
pling are possible from a theoretical point of view due to
quantum-mechanical four and five-fold degenerate states.
The ground state of pure C60 molecule is singlet Ag state,
so it is not very sensitive to JT effect. However, the ground
state of C+

60 and C−60 states do potentially strong effects.
Ionic form of C60 molecule is subject to the Dynamical
Jahn-Teller effect (DJT). The Dynamical Jahn-Teller ef-
fect is closely related to, but should be distinguished from
the static Jahn-Teller effect, where there is a permanent
symmetry breaking molecular distortion or instability to
one of the potential-well minima, removing all or part of
orbital degeneracy. JT effect is also important from exper-
imental point of view. Most workers agree that electron-
vibron interactions are very important for many proper-
ties of fullerenes and may explain superconductivity. It
is known that origin of superconducting pairing in C60
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compounds is due to interaction of electrons with vibronic
modes of C60 molecule.

In the general formalism of the JT effect, a degen-
erate electronic state corresponding to a representation
of D of symmetry group G of the molecule can interact
with the vibrational modes corresponding to representa-
tions contained in the symmetric part of the direct prod-
uct D⊗D (excluding the identical representation which
is trivial). As it is well-known, the molecular symme-
try reduced by the JT distortion with splitting of the
electronic-state degeneracy. The distorting forces acting
along a certain non-totally vibrational modes carry the
nuclei over into distorted configurations. Distorted config-
uration of a molecule can be characterised by subgroup
symmetries of parent molecular group.

In general, a physical system may pass from a sym-
metric to less symmetric state, during its evolution. This
symmetry transition is known as spontaneously symmetry
breaking [6,7]. The process of symmetry breaking applies
to all domains described by expectation values of opera-
tors. This common mathematical technique can be applied
successfully to different domains of physics because they
all share in the occurrence of broken symmetry.

In order to study the JT structure of AxC60 and/or
C±n various theoretical approaches have been used. Ceule-
man has proposed on analytical treatment of JT distor-
tion in the general case of a fivefold degenerate state of
an Ih molecule. The extreme points were identified by us-
ing the isostationary function and epikernel methods [1,2].
First order JT interaction and its continuous group invari-
ance were discussed and the energies were found for JT
coupling with and without splitting [3]. The ground state
Berry phase of some JT systems were calculated in the
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five dimensional rotation group SO(5) [4]. Classical and
semi-classical models were introduced about JT manifold
for electron vibron interactions, by Auerback, Manini and
Tosatti [5]. The H⊗(h⊕g) problem is investigated analyt-
ically using a unitary transformation by Moate et al. [12].

The present paper provides a group theoretical treat-
ment of JT distortion in general case of a fivefold degen-
erate state of Ih molecule. The JT surface energies have
been obtained by breaking symmetries of Ih group into its
maximal little group. This is never done before.

2 Symmetry aspects and coupling of states

In this section, we start by describing the Hamiltonian
that generates D`⊗D` surface where D` denotes the
irreducible representation. The standard Hamiltonian
may be written in the form

H = H0 +HJT

H0 =
1
2
~ω
∑
i

(P 2
i +Q2

i ) (1)

where H0 describes free (uncoupled) electrons/holes and
vibrations, Qi is the distortion coordinate and, Pi is the
conjugate momentum. In general, HJT introduces a rota-
tionally invariant linear coupling between the electronic
state and the vibrational mode. It is known that the
Hamiltonian for a linear JT coupling of H⊗(2h⊕g) system
is invariant under the rotational operations of Ih group.
If either the restriction of linear coupling or harmonic
forces is relaxed, the symmetry of Hamiltonian is reduces
to point group G.

As we have mentioned above, totally symmetric
part of direct product of an irreducible representation
of a finite group, which describes the properties of JT
surfaces, is written in the form of

[D` ⊗D`] = D`1 ⊕D`2 ⊕ ...⊕D`n (2)

where ` is the angular momentum quantum number. De-
composition of [D`⊗D`] implies that the JT Hamiltonian
can be written in the following way

HJT = H`1 +H`2 + ...+H`n (3)

where H` is the JT Hamiltonian and it is invariant under
the symmetry operations of corresponding finite group,
for the 2` + 1 dimensional representation. Since the Ih
group is subgroup of O(3), decomposition of coupling of
two states should be written in terms of

[D2 ⊗D2] = D0 ⊕D2 ⊕D4. (4)

Therefore, symmetric part of the five dimensional direct
product for Ih group can be written in the notation of
icosahedral molecule:

[Hu ⊗ Hu] = [H2
u] = [H2

g] = Ag ⊕ Hg ⊕ (Gg ⊕Hg) (5)

where Ag, Gg and Hg are one, four and five dimensional
irreducible representations of Ih, respectively. The decom-

Table 1. The representations of the O(3) group with ` < 14
are split by the icosahedral point group.

` Ih ` Ih

0 Ag 7 T1u+T2u+Gu+Hu

1 T1u 8 T2g+Gg+Hg+ Hg

2 Hg 9 T1u+T2u+Gu+Gu+Hu

3 Gu+T2u 10 Ag+T1g+T2g +Gg+2Hg

4 Gg+Hg 11 2T1u+T2u+Gu+ 2Hu

5 T1u+T2u+Hu 12 Ag+T1g+T2g +2Gg+2Hg

6 Ag+T1g+Gg+Hg 13 T1u+2T2u+2Gu+2Hu

position of direct product of [Hu ⊗ Hu] coupling in O(3)
is found using the Table 1 and is in the form

HJT = H0 +H2 +H4 (6)

where the superscripts 2 and 4 are ` values. The sym-
metric part contains the totally symmetric representation
H0 = Ag that is trivial polaronic problem [9,10] and it
can be solved, exactly. The H0 vibration shift energies
but it does not cause splitting. Remaining vibrations sub-
tend the configuration space, which contains all distorted
configurations, may be reached by JT active coordinates.
As shown from Table 1, the Hamiltonian H2 corresponds
five dimensional representations Hg and H4 corresponds
to the direct sum of Gg⊕Hg vibrational levels.

3 Determination of stationary points on JT
surface using little groups of icosahedral

The second important aspect of invariant polynomial func-
tions, in addition to, linear Jahn-Teller matrices, concerns
the extremum points on JT surface. Since our interest are
the minimal points and the saddle points, the present sec-
tion is devoted to the determining of extremum points on
JT surface by breaking symmetries of icosahedral group
into its maximal little groups. The problem has been stud-
ied by Ceulemans by using the isostationary function [1].

The little group is the new symmetry group of dis-
torted molecule as a result of coupling. A real representa-
tion of any subgroup S < G; the degree of subduction can
be computed by the relation

C`(S) =
1
S

∑
p∈S

χz(p) (7)

where χz(p) is the character of the representation p. In a
zth representation of finite group, if all subgroups S′ > S
and C`(S′) < C`(S) then S is little group of G. For fi-
nite groups converse of this definition is also true. In or-
der to simplify the notation, we shall switch from O(3)
to the SO(3) notation, omitting therefore the g/u symbol
for inversion. Then, the electronic-vibrational coupling is
symbolized as H⊗(2h⊕ g) where capital letter shows elec-
tronic and small letters show the vibrational levels. With-
out loss of generality the problem for Ih group can be
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Table 2. Maximal Little groups of H and G representations. Decomposition implies that T is not maximal little group of H
state, and D5 is not maximal little group for G state.

D2 D3 D5 T

H 2A+B1+ B2+ B3 A1+2E A1+E1+E2 E+T

G A+B1+ B2+ B3 A1+A2+E E1+E2 2A+E

H⊕G 3A+2B1+2B2+2B3 2A1+A2+3E A1+2E1+2E2 2A+2E+T

treated equally well in the subgroup of proper rotations
of group I. The maximal little subgroups of I group have
computed by using equation (7) and are given in Table 2.
As seen from Table 2, the maximal little groups predict the
existence of dihedral groups D5, D3, and D2 minima on
the icosahedral molecular cage. In the coordinate space
the distortion that is the result of JT instability should
conserve all maximal little group symmetry.

In our perspective the structure of Jahn-Teller surfaces
have been identified by the symmetry breaking of the con-
tinuous symmetry to the true finite point group of the
representation space and its maximal little groups. This
may be represented as follows

I→ S′ (8)

where S′ are little groups of I group given in Table 2.

4 Group invariance of Jahn-Teller systems

As we stated in the previous section, the Hamiltonian of
H⊗(2h ⊕ g) coupling have three parts H0, H2 and H4,
which must be separately invariant under I symmetry. In
this section, we want to construct a polynomial function
in electronic and nuclear configuration space, to examine
symmetry properties of potential energy surface. A poly-
nomial function which have been produced for this pur-
pose is in the form

U`m(X,Q) =
2`+1∑
i,j=1

2m+1∑
k=1

FijkXiXjQk. (9)

B2 = F1


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√

3Q3

√
3Q4 2Q1
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√
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(12)

In this expression Xi and Xj correspond to electronic
coordinates Qk corresponds to nuclear coordinates. The
force elements or coupling coefficients should be chosen
appropriately for each H⊗h and H⊗(h ⊕ g) coupling. In
the equation (9) the indices 2`+ 1 and 2m+ 1 stand for
dimensions of electronic and active coordinates, respec-
tively. For H⊗h coupling ` and m take value 2 and for
H⊗(h⊕ g) case ` and m take values 2 and 4 respectively.

We will focus our treatment for the computation of
invariant polynomials for H⊗h and H⊗(h⊕ g) problems.
The invariant polynomial function for ` = 2, in real basis
has been computed using the matrix representations of H
state which are given in Appendix. The 5 × 5 generators
transform electronic coordinatesXi (i = 1...5) and nuclear
coordinates Qi. It can be written in the form

5∑
i,j=1

5∑
k=1

FijkXiXjQk =
5∑

i,j=1

5∑
k=1

FijkX
′
iX
′
jQ
′
k. (10)

In this equation, X ′i =
∑5
n=1 Γ

r
inXn and Q′k =∑5

n=1 Γ
r
inQn. Γ rin is the matrix elements of 5×5 generators

of I. The equation (10) is solved for Fijk and two linearly
independent polynomial function have been obtained. One
of our main goal that first order JT interaction matrices
can be derived by working out invariant polynomial func-
tion. The double differentiation of U22(X,Q) with respect
to electronic coordinates Xi and Xj produce linear JT
interaction matrix. In general, we can write

(Bm)ij =
∂2U2m

∂Xi∂Xj
, (i, j = 1, 2...5). (11)

The JT interaction matrix for H⊗h coupling is

see equation (12) below.
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. (15)

The force elements F1 and F2 are given by

F1 =
1

135
√

3
(−13

√
5FH1 + 15FH2),

F2 =
1

27
√

15
(
√

5FH1 + 3FH2). (13)

In this equation FH1 and FH2 are coupling parameters
of H mode. The invariant polynomial function is derived
for H⊗(h ⊕ g) as in the same way H⊗h. In this case
equation (10) takes form

5∑
i,j=1

9∑
k=1

FijkXiXjQk =
5∑

i,j=1

9∑
k=1

FijkX
′
iX
′
jQ
′
k. (14)

Nine dimensional H⊗(h⊕ g) state consists of one H mode
with components {Q1, Q2, Q3, Q4, Q5} and G mode with
components {Q6, Q7, Q8, Q9}. The icosahedral generators
transform the electronic and nuclear coordinates. Trans-
formation X ′i and X ′j are same as given in equation (10).
The nuclear coordinates Q′k is transformed as Q′k =∑9
n=1 Λ

`
inQn where Λ` is the direct sum of 5 and 4 di-

mensional irreducible matrix generators Γ and Ω given
in Appendix, respectively. Solution of the equation (14)
for coefficients Fijk gives that three linearly independent
function. In Ceulemans’s paper [1], relations between poly-
nomial coefficients Fijk in equations (10, 14) are expressed
in terms of Clebsch Gordon series for the icosahedral point
group [13]. The linear JT interaction matrices for this cou-
pling are derived from the relation (11). The two of them
are same with matrices of H⊗h coupling and third one is
given in:

see equation (15) above.

The sum of the B2 given in equation (12) and JT interac-
tion matrix given in equation (15) corresponds to the first
order JT interaction matrix (B4) for H⊗(h⊕ g) coupling.
It is obvious that the interaction matrix is also obtained
by considering only H⊗g coupling. Force element F3 is re-
lated by coupling parameter of G mode and is given by
F3 = FG/9. The first order linear JT interaction matrices
for H state have been found in [14] and are in agreement
with our results. We guess that the higher order JT inter-
action matrices may be obtained by constructing higher
order icosahedral invariant polynomials.

In Section 4.1, symmetry of icosahedral is broken into
its little groups for H⊗h and H⊗(h⊕ g). Combination of
eigenvalues of the Bm with harmonic potential energy, in
terms of little groups yield JT surface energy.

4.1 Transitions associated with H⊗h and H⊗(h⊕g)
couplings

The five dimensional irreducible representation of I group
has three maximal little group named D2, D3 and D5. In
order to break symmetry of a parent group into its little
groups, one should assign an appropriate Qi which can be
computed by constructing set of equations such that

Qi =
2`+1∑
j=1

ΓijQj (16)

where Γij is the matrix elements of generator of the corre-
sponding little group. The method of symmetry breaking
predicts the existence of saddle points, trigonal and pen-
tagonal turning points on JT surfaces associated with D2,
D3 and D5 groups. From the solution of equation (16) it
is found that two H type coordinates QH1, QH2 and one
G type coordinate QG. The H and G type coordinates
are constrained to Q4 = −τQH1, Q5 = −(

√
15/2)QH2,

Q6 = QG, where τ = (1 +
√

5)/2 Under the given con-
ditions; the energy eigenvalues of each little group are
computed.

4.1.1 D2 transition

Decomposition of five dimensional representations in D2

group is 2A+B1+ B2+ B3. The symmetry of the group I is
broken into D2, assigning asQ1 →

√
5Q4−

√
3Q5, Q2 → 0,

Q3 → 0, Q4 → Q4, Q5 → Q5, using the equation (16).
After substituting values of Qi into B2, the eigenvalues
of B2 are carried out. Combinations of eigenvalues of B2

with harmonic restoring potentials for the distortional co-
ordinates QH1, and QH2 gives JT surface energy values

E(A) = ± 1
2
√

10
[(3F 2

H1 + F 2
H2)(2τ2Q2

H1 − 5τQH1QH2

+ 5Q2
H2)]

1
2 +KH(Q2

H1 +Q2
H2)/2,

E(B1) =
1

4
√

5
(FH1 + FH2)(4τQH1 − 5QH2)

+ (FH1 − 3FH2)
√

5QH2 +KH(Q2
H1 +Q2

H2)/2,
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1

4
√

5
(FH2 − FH1)(4τQH1 − 5QH2)

+ (FH1 + 3FH2)
√

5QH2 +KH(Q2
H1 +Q2

H2)/2,

E(B3) = − 1√
5

2τFH1QH1 −
1
2

(FH1 −
√

5FH2)QH2

+KH(Q2
H1 +Q2

H2)/2. (17)
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In this equation, KH is the harmonic force constant. The
energy values of E(A) predicts the existence of saddle
points.

The direct sum of g and h states consists of both
G-type and H-type nuclear coordinates. For this reason,
computations are more complicated than the h state. In
this case, there are three distortional coordinates that are
invariant under D2. In equation (16) nine dimensional ma-
trix generators which have been obtained by taking direct
sum of five and four dimensional representations are used
to assign Qi values. It is found that Q1 →

√
5Q4−

√
3Q5,

Q2 → 0, Q3 → 0, Q4 → Q4, Q5 → Q5, Q6 → Q6, Q7 → 0,
Q8 →

√
5Q6, Q9 → 0. In this basis, combination of eigen-

values of B4 with harmonic potential gives us

E(A) = ± 1
2
√

10
[(3F 2

H1 + F 2
H2)(2τ2Q2

H1 − 5τQH1QH2

+ 5Q2
H2)]

1
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3
8
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1
2
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2
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1
2
KH(Q2

H1 +Q2
H2)
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1

4
√

5
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√
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1
4
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+
1
2
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2
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1

4
√
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√

5QH2 −
1
4
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+
1
2
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2
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1
2
KH(Q2

H1 +Q2
H2)
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5
FH122QH1 −

1
2

(FH1 −
√

5FH2)QH2

− 1
4
FGQG +

1
2
KGQ

2
G +

1
2
KH(Q2

H1 +Q2
H2), (18)

where KG in the equation (18) is the harmonic force con-
stant of G mode. It is obvious that the magnitude of split-
ting of energy values is increasing in h⊕ g state compared
to h state.

4.1.2 D3 Transition

In this case decomposition of H representation of irre-
ducible representations of D3 is A1+2E in D3. Following
the same procedure given in 4.1.1, symmetry of I group
can be broken into D3, in the directions, Q1 → 0, Q2 → 0,
Q3 → 0, Q4 → 0, Q5 → Q5. The computed energy values
are given as

E(A1) = −2
3
FH1QH2 +

1
2
KHQ

2
H2,

E∓(E) =
1
6
FH1QH2 ∓

√(
FH1

3

)2

+
(
FH2

2

)2

QH2

+
1
2
KHQ

2
H2. (19)

Transformation of nuclear coordinates for H⊗(h⊕g) state
gives that Q1 → 0, Q2 → 0, Q3 → 0, Q4 → 0, Q5 → Q5,
Q6 → Q6, Q7 → 0, Q8 → 0, Q9 → 0. The energy values
consists of the two distortional coordinates, and therefore

E(A1) = −2
3

(FGQG + FH1QH2) +
1
2
KGQ

2
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KHQ

2
H2,
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1
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1
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5
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1
4
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H2Q
2
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] 1
2

+
1
2
KGQ

2
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1
2
KHQ

2
H2. (20)

These energy values are in agreement with the energy val-
ues given in [1].

4.1.3 D5 Transition

In D5 the quintet irreducible representation state reduces
to A1+E1+E2. Applying the same procedure as in the
previous section, Qi values are found as Q1 → −Q4/τ

2,
Q2 → 0, Q3 → 0, Q4 → 0, Q5 → (

√
3/2τ)Q4. The corre-

sponding energies are obtained as

E (A1) = − 2√
5
FH2QH1 +

1
2
KHQ

2
H1,

E (E1) =
1
2

(
−FH1 +

1√
5
FH2

)
QH1 +

1
2
KHQ

2
H1,

E (E2) =
1
2

(
FH1 +

1√
5
FH2

)
QH1 +

1
2
KHQ

2
H1. (21)

The calculations have been carried out for H⊗(h⊕g) cou-
pling and same results have been obtained as expected.

Tetrahedral group (T) is also maximal little group of
G representation of I group. In H⊗(h⊕ g) coupling some
energy values have been expected. (Since T is not little
group of H representation. Thus in H⊗h coupling energy
eigenvalues of B2 is zero.) Decomposition of H state in T
group is E+T, and symmetry is broken according to the
directions Q9 → −

√
5/3Q6, Qi → 0, (i = 1, ...8). The cor-

responding eigenvalues of B4 are FGQG and (−2/3)FGQG,
for E and T respectively.

In general, minimal energy values for each little group
can be obtained from the given energy expressions.

5 Conclusion

In summary, we have shown how the symmetry breaking
method is applied for the determination of the potential
energies of the H⊗(2h ⊕ g) surface. In Ceulemans’ pa-
per [1], these energies were found by the method of iso-
stationary function and potential energies of D3 and D5

groups were investigated. In our work, all maximal little
groups of icosahedral group are studied for the H⊗(h⊕ g)
and H⊗h state. Splitting of energy levels of icosahedral
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system due to distortion is analysed and amazingly in-
teresting that, there is a proper contribution on the con-
nection between our method and method of isostationary
function. This method can also be used for other distorted
systems.

Authors would like to thank the Scientific and Technical Re-
search Council of Turkey for its partial support.

Appendix A: Generators of I, D2, D3, D5

and T groups for G and H representations

Four and five dimensional irreducible matrix generators of
I and its little groups can be generated from the matrices:

Ω1, Ω2, Γ 1, Γ 2 → I Ω3, Ω4, Γ 3, Γ 4 → D5

Ω2, Ω4, Γ 2, Γ 4 → D3 Ω1, Ω4, Γ 1, Γ 4 → D2

Ω2, Ω5, Γ 2, Γ 5 → T

Ω1 =
1
3


−2 0

√
5 0

0 0 0 3√
5 0 2 0

0 3 0 0

 Ω2 =
1
2


2 0 0 0
0 −1

√
3 0

0 −
√

3 −1 0
0 0 0 2



Ω3 =
1
6


−4

√
15 −

√
5 0

−
√

15 −3
√

3 −3
−
√

5 −
√

3 1 3
√

3
0 −3 −3

√
5 0

 Ω4 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



Ω5 =
1

6
√

3


√

3 −3
√

5
√

15 −3
√

5
−3
√

5 0 −6 −3
√

3√
15 −6 −4

√
3 3

−3
√

5 −3
√

3 3 −3
√

3


and

see equations above.
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